ビットマップ

記事数:(5)

画像

ジャギー:滑らかでない表示の謎

私たちが普段何気なく見ているコンピューターの画面。それは、実は小さな点々で出来上がっています。まるで、夜空に輝く無数の星のように、画面全体に広がっています。一つ一つの点は、あまりにも小さいため、普段は肉眼ではっきりと認識することは難しいでしょう。しかし、虫眼鏡などで画面を拡大して見てみると、正方形や長方形といった小さな区切りが、格子状に並んでいる様子が見えてきます。 これらの小さな区切りの一つ一つを「画素」と呼びます。そして、この画素こそが、画面に映像を映し出すための、最小単位なのです。一つ一つの画素は、赤、緑、青の3色の光を放つことができます。これらの3色の光を、様々な明るさで混ぜ合わせることによって、実に多様な色を表現することが可能になるのです。例えば、赤と緑を混ぜれば黄色に、赤と青を混ぜれば紫色になります。3色全てを同じ明るさで混ぜると白になり、3色全てを消すと黒になります。 画面に表示される文字や写真、動画など、あらゆるものは、この無数の画素の集合体によって表現されています。ちょうど、色のついた小さなビーズを並べて、絵を描くようなものだと考えてみてください。ビーズの一つ一つが画素にあたり、ビーズの色が画素の色の役割を果たします。より小さなビーズをたくさん並べることで、きめ細やかで滑らかな絵を描くことができます。同じように、画素の数が多いほど、より精細で美しい映像を表示することができるのです。しかし、ビーズの数には限りがあるように、画素の数にも限りがあります。そのため、あまりにも複雑な映像を表示しようとすると、どうしても表現しきれない部分が出てきてしまうこともあります。
画像

画像形式BMP:特徴と利点

「ビットマップ」を縮めた「ビーエムピー」は、絵を扱うためのファイル形式のひとつです。窓の中でもともと使えるようになっているので、窓を使っている人にはなじみ深い形式と言えるでしょう。色の数はなんと1677万7216色も表現できるので、写真のような微妙な色の変化もそのまま再現できます。この高い表現力のおかげで、印刷物にも向いている形式として広く使われています。構造が単純なので、他の形式と比べて機器の違いを気にせず使えるのも大きな利点です。色々な絵を編集する道具で開いたり、保存したりするのが簡単なので、データのやり取りに便利です。 ビーエムピーは、色の情報を点の集まりで表す、点描のような方法をとっています。一つ一つの点は非常に小さく、肉眼では点として認識できないほどです。これらの点が緻密に並べられ、全体として一つの絵を作り上げています。点の色と位置の情報がファイルに記録されており、この情報に基づいて絵が表示されます。色の情報は、赤、緑、青の三色の組み合わせで表現されます。それぞれの色の強さを細かく調整することで、1677万7216色という豊富な色彩を表現することが可能になっています。 ビーエムピーの大きな特徴の一つは、圧縮されていないことです。圧縮とは、データの容量を小さくするための技術ですが、ビーエムピーは圧縮されていないため、元の絵の情報がそのまま保存されます。これは、画質が劣化しないという大きなメリットにつながります。しかし、圧縮されていないということは、ファイルのサイズが大きくなるというデメリットも持っています。そのため、容量の小さな記録装置では扱いにくい場合もあります。とはいえ、高画質を維持したままデータを保存したい場合や、印刷物を作成する場合には、ビーエムピーは非常に適した形式と言えるでしょう。
画像

ビットマップ形式を理解する

点描画のように、無数の点が集まって一枚の絵を描く方法を想像してみてください。画面に表示される絵は、実は小さな点の集まりでできています。この小さな点を画素と呼びます。そして、それぞれの画素に色の情報を持たせることで、全体として一つの絵として見えるようにしているのです。 画素一つ一つに、赤、青、緑といった色の情報を直接指定していく方法をビットマップ形式と呼びます。正式にはビットマップ画像ですが、ビットマップ形式、または拡張子のBMPから、単にBMPと呼ばれることもあります。この形式は、色の情報を画素に直接記録するため、絵の描き方としては単純で分かりやすいと言えるでしょう。 しかし、この単純さが弱点になることもあります。例えば、ビットマップ形式の絵を拡大表示しようとすると、どうなるでしょうか。一つ一つの画素が、まるでモザイク画のタイルのように見えてしまいます。これは、拡大表示によって画素と画素の間の隙間が広がり、本来滑らかに見えるべき線がギザギザになってしまうからです。写真のように、色の変化が滑らかな絵には、あまり向きません。 一方で、色の変化が少ない絵には、ビットマップ形式は適しています。例えば、会社のマークや、目印となる記号のような、単純な図形の場合です。これらの絵は、色の変化が少なく、拡大しても細部がぼやける心配が少ないため、ビットマップ形式でも綺麗に表現できます。また、ファイルの大きさが比較的小さいという利点もあります。そのため、パソコンの画面に表示される小さな絵や、容量を節約したい場合などに、よく使われています。
画像

画像の種類:ビットマップ画像とは?

計算機で絵を描くには、色のついた小さな点々を隙間なく並べる方法があります。この小さな点は「画素」と呼ばれ、一つ一つに色が指定されています。一つ一つの画素はとても小さく、肉眼では点々と認識できないほどです。 この画素を、まるで色のついた小さなビーズのようにたくさん並べることで、複雑な模様や写真のような滑らかな色の変化も表現できます。例えば、空のグラデーションを表現したいときには、青い画素と白い画素を少しずつ混ぜながら並べていくことで、自然な色の変化を作り出せます。 この画素の集まりで絵を表現する方法は「ビットマップ画像」と呼ばれています。ビットマップ画像は、写真のように色の変化が複雑な絵を忠実に再現するのに優れています。まるで、たくさんの色のビーズを使って、巨大な絵を描くようなものです。 絵の鮮明さや色の豊かさは、画素の数と色の種類で決まります。画素の数を増やすと、より細かい表現が可能になり、絵が鮮明になります。色の種類を増やすと、より自然で豊かな色の表現が可能になります。例えば、夕焼けの空を表現するために、赤、橙、黄色の微妙な色の変化を表現するには、たくさんの色の種類が必要です。 このように、計算機では、小さな色の点である画素を並べることで、様々な絵を表現しているのです。まるで、目に見えない小さな手で、一つ一つ丁寧にビーズを並べて、美しい絵を作り上げているかのようです。
ソフトウェア

高速画像処理の鍵、ビットブリット

皆さんが普段見ている電子計算機の画面表示は、まるで劇場の舞台装置が入れ替わる様子と似ています。劇場では、場面転換の際に、大きな背景の絵が舞台裏から運び出され、前の絵と素早く入れ替えられます。これと同じように、電子計算機の画面に映し出される映像も、表示したい絵の情報を記憶装置から取り出し、画面に相当する記憶場所に書き込むことで実現されます。 この画面表示専用の記憶場所は、まるで舞台裏の絵置き場のようなもので、よく「図形記憶装置」や「映像記憶装置」などと呼ばれます。表示したい絵の情報は、まず主要な記憶装置からこの図形記憶装置へと送られます。この情報の移動は、まるで舞台係が背景の絵を舞台裏から運び出す作業に似ています。この絵の移動作業を「点描転送」と呼びます。 点描転送は、絵の情報を正確に、そして素早く画面に表示するために欠かせない作業です。まるで、多くの観客が見ている前で、背景の絵をスムーズに入れ替える舞台係の熟練した技のようです。点描転送が速ければ速いほど、滑らかで自然な画面表示が可能になります。例えば、動画を滑らかに再生したり、複雑な図形を素早く表示したりするために、この点描転送の速度は非常に重要です。 さらに、最近の電子計算機では、この点描転送を専門に処理する部品が搭載されているものもあります。これは、舞台転換を専門に行う舞台係がいるようなものです。専門の部品を使うことで、より速く、より効率的に点描転送が行われ、高画質で滑らかな映像表示が可能になります。まるで、舞台装置の転換が一瞬で行われ、観客を驚かせる魔法のようなものです。 このように、電子計算機の画面表示は、舞台裏で行われる緻密な作業によって支えられています。私たちが目にする鮮やかな映像は、点描転送をはじめとする様々な技術の積み重ねによって実現されているのです。